
QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

1

- QoS and Congestion Avoidance -

Queue Congestion

Switch (and router) queues are susceptible to congestion. Congestion occurs

when the rate of ingress traffic is greater than can be successfully processed

and serialized on an egress interface. Common causes for congestion

include:

• The speed of an ingress interface is higher than the egress interface.

• The combined traffic of multiple ingress interfaces exceeds the

capacity of a single egress interface.

• The switch/router CPU is insufficient to handle the size of the

forwarding table.

By default, if an interface’s queue buffer fills to capacity, new packets will

be dropped. This condition is referred to as tail drop, and operates on a first-

come, first-served basis. If a standard queue fills to capacity, any new

packets are indiscriminately dropped, regardless of the packet’s

classification or marking.

QoS provides switches and routers with a mechanism to queue and service

higher priority traffic before lower priority traffic. Queuing is covered in

detail in a separate guide.

QoS also provides a mechanism to drop lower priority traffic before higher

priority traffic, during periods of congestion. This is known as Weighted

Random Early Detection (WRED), and is covered in detail in this guide.

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

2

Random Early Detection (RED) and Weighted RED (WRED)

Tail drop proved to be an inefficient method of congestion control. A more

robust method was developed called Random Early Detection (RED).

RED prevents the queue from filling to capacity, by randomly dropping

packets in the queue. RED essentially takes advantage of TCP’s ability to

resend dropped packets.

RED helps alleviate two TCP issues caused by tail drop:

• TCP Global Synchronization – occurs when a large number of TCP

packets are dropped simultaneously. Hosts will reduce TCP traffic

(referred to as slow start) in response, and then ramp up again…

simultaneously. This results in cyclical periods of extreme congestion,

followed by periods of under-utilization of the link.

• TCP Starvation – occurs when TCP flows are stalled during times of

congestion (as detailed above), allowing non-TCP traffic to saturate a

queue (and thus starving out the TCP traffic).

RED will randomly drop queued packets based on configurable thresholds.

By dropping only some of the traffic before the queue is saturated, instead of

all newly-arriving traffic (tail drop), RED limits the impact of TCP global

synchronization.

RED will drop packets using one of three methods:

• No drop – used when there is no congestion.

• Random drop – used to prevent a queue from becoming saturated,

based on thresholds.

• Tail drop – used when a queue does become saturated.

RED indiscriminately drops random packets. It has no mechanism to

differentiate between traffic flows. Thus, RED is mostly deprecated.

Weighted Random Early Detection (WRED) provides more granular

control – packets with a lower IP Precedence or DCSP value can be dropped

more frequently than higher priority packets.

This guide will concentrate on the functionality and configuration of WRED.

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

3

WRED Fundamentals

There are two methods to configuring WRED. Basic WRED configuration

is accomplished by configuring minimum and maximum packet thresholds

for each IP Precedence or DSCP value.

• The minimum threshold indicates the minimum number of packets

that must be queued, before packets of a specific IP Precedence or

DSCP value will be randomly dropped.

• The maximum threshold indicates the number of packets that must

be queued, before all new packets of a specific IP Precedence or

DSCP value are dropped. When the maximum threshold is reached,

WRED essentially mimics the tail drop method of congestion control.

• The mark probability denominator (MPD) determines the number

of packets that will be dropped, when the size of the queue is in

between the minimum and maximum thresholds. This is measured as

a fraction, specifically 1/MPD. For example, if the MPD is set to 5,

one out of every 5 packets will be dropped. In other words, the chance

of each packet being dropped is 20%.

Observe the following table:

Precedence Minimum Threshold Maximum Threshold MPD
0 10 25 5

1 12 25 5

2 14 25 5

3 16 25 5

If the WRED configuration matched the above, packets with a precedence of

0 would be randomly dropped once 10 packets were queued. Packets with a

precedence of 2 would similarly be dropped once 14 packets were queued.

The maximum queue size is 25, thus all new packets of any precedence

would be dropped once 25 packets were queued.

Advanced WRED configuration involves tuning WRED maximum and

minimum thresholds on a per-queue basis, rather than to specific IP

Precedence or DSCP values. In this instance, the min and max thresholds are

based on percentages, instead of a specific number of packets. This is only

supported on higher model Catalyst switches.

WRED only affects standard queues. Traffic from strict priority queues is

never dropped by WRED.

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

4

Configuring Basic WRED

WRED configuration can be based on either IP Precedence or a DSCP

value. To configure WRED thresholds using IP Precedence:

Router(config)# interface fa0/1

Router(config-if)# random-detect

Router(config-if)# random-detect precedence 0 10 25 5

Router(config-if)# random-detect precedence 1 12 25 5

Router(config-if)# random-detect precedence 2 14 25 5

Router(config-if)# random-detect precedence 3 16 25 5

Router(config-if)# random-detect precedence 4 18 25 5

Router(config-if)# random-detect precedence 5 20 25 5

The first random-detect command enables WRED on the interface. The

subsequent random-detect commands apply a minimum threshold,

maximum threshold, and MPD value, for each specified IP Precedence level.

To configure WRED thresholds using DSCP values:

Router(config)# interface fa0/10

Router(config-if)# random-detect

Router(config-if)# random-detect dscp-based af11 14 25 5

Router(config-if)# random-detect dscp-based af12 12 25 5

Router(config-if)# random-detect dscp-based af13 10 25 5

Router(config-if)# random-detect dscp-based af21 20 25 5

Router(config-if)# random-detect dscp-based af22 18 25 5

Router(config-if)# random-detect dscp-based af23 16 25 5

To view the WRED status and configuration on all interfaces:

Router# show interface random-detect

Router# show queuing

WRED is not compatible with Custom Queuing (CQ), Priority Queuing

(PQ) or Weighted Fair Queuing (WFQ), and thus cannot be enabled on

interfaces using one of those queuing methods.

(Reference: http://www.cisco.com/en/US/docs/ios/12_0/qos/configuration/guide/qcwred.html)

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

5

Configuring Advanced WRED with WRR

On higher-end Catalyst models, WRED can be handled on a per-queue basis,

and is configured in conjunction with a feature called Weighted Round

Robin (WRR).

Recall that interfaces have both ingress (inbound) queues and egress

(outbound) queues. Each interface has one or more hardware queues (also

known as transmit (TxQ) queues). Traffic is placed into egress hardware

queues to be serialized onto the wire.

There are two types of hardware queues. By default, traffic is placed in a

standard queue, where all traffic is regarded equally. However, interfaces

can also support strict priority queues, dedicated for higher-priority traffic.

DiffServ QoS can dictate that traffic with a higher DSCP or IP Precedence

value be placed in strict priority queues, to be serviced first. Traffic in a

strict priority queue is never dropped due to congestion.

A Catalyst switch interface may support multiple standard or strict priority

queues, depending on the switch model. Cisco notates strict priority queues

with a “p”, standard queues with a “q”, and WRED thresholds per queue

(explained in a separate guide) with a “t”.

If a switch interface supports one strict priority queue, two standard queues,

and two WRED thresholds, Cisco would notate this as:

1p2q2t

To view the supported number of hardware queues on a given Catalyst

switch interface:

Switch# show interface fa0/12 capabilities

The strict priority egress queue must be explicitly enabled on an interface:

Switch(config)# interface fa0/12

Switch(config-if)# priority-queue out

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

6

Configuring Advanced WRED with WRR(continued)

Standard egress queues can be assigned weights, which dictate the

proportion of traffic sent across each queue:

Switch(config-if)# wrr-queue bandwidth 127 255

The above command would be used if a particular port has two standard

egress queues (remember, the number of queues depends on the Catalyst

model). The two numbers are the weights for Queue 1 and Queue 2,

respectively. The weight is a number between 1 and 255, and serves as a

ratio for sending traffic.

In the above example, Queue 2 would be allowed to transmit twice as much

traffic as Queue 1 every cycle (255 is roughly twice that of 127). This way,

the higher-priority traffic should always be serviced first, and more often.

Next, WRED/WRR can be enabled for a particular queue. Cisco’s

documentation on this is inconsistent on whether it is enabled by default, or

not. To manually enable WRED/WRR on Queue 1:

Switch(config-if)# wrr-queue random-detect 1

To disable WRED/WRR and revert to tail-drop congestion control:

Switch(config-if)# no wrr-queue random-detect 1

Next, the WRED/WRR minimum and maximum thresholds must be tuned.

Again, this is accomplished per standard queue, and based on a percentage

of the capacity of the queue.

Recall that each switch port has a specific set of queues (for example,

1p2q2t). The 2t indicates that two WRED/WRR thresholds can exist per

standard queue.

Switch(config-if)# wrr-queue random-detect min-threshold 1 5 10

Switch(config-if)# wrr-queue random-detect max-threshold 1 40 100

The first command sets two separate min-thresholds for Queue 1,

specifically 5 percent and 10 percent.

The second command sets two separate max-thresholds for Queue 1,

specifically 40 percent and 100 percent.

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

7

Configuring Advanced WRED with WRR (continued)

Why two separate minimum and maximum thresholds per queue? Because

packets of a specific CoS value can be mapped to a specific threshold of a

specific queue.

Observe:

Switch(config-if)# wrr-queue cos-map 1 1 0 1

Switch(config-if)# wrr-queue cos-map 1 2 2 3

The first command creates a map, associating queue 1, threshold 1 with CoS

values of 0 and 1.

The second command creates a map, associating queue 1, threshold 2 with

CoS values of 2 and 3.

All traffic marked with CoS value 0 or 1 will have a minimum threshold of 5

percent, and a maximum threshold of 40 percent (per the earlier commands).

All traffic marked with CoS value 2 or 3 will have a minimum threshold of

10 percent, and a maximum threshold of 100 percent.

The above wrr-queue commands are actually the default settings on higher-

end Catalyst switches.

To view the QoS settings on a Catalyst interface:

Switch# show mls qos interface fa0/10

To view the queuing information for a Catalyst interface:

Switch# show mls qos interface fa0/10 queuing

To view QoS mapping configurations:

Switch# show mls qos maps

QoS and Congestion Avoidance v1.41 – Aaron Balchunas

* * *

All original material copyright © 2010 by Aaron Balchunas (aaron@routeralley.com),
unless otherwise noted. All other material copyright © of their respective owners.

 This material may be copied and used freely, but may not be altered or sold without the expressed written

consent of the owner of the above copyright. Updated material may be found at http://www.routeralley.com.

8

Configuring Class-Based WRED (CBWRED)

The functionality of Class-Based Weighted Fair Queuing (CBWFQ) can be

combined with WRED to form Class-Based WRED (CBWRED). CBWFQ

is covered in detail in a separate guide.

CBWRED is implemented within a policy-map:

Router(config)# class-map HIGH

Router(config-cmap)# match ip precedence 5

Router(config)# class-map LOW

Router(config-cmap)# match ip precedence 0 1 2

Router(config)# policy-map THEPOLICY

Router(config-pmap)# class HIGH

Router(config-pmap-c)# bandwidth percent 40

Router(config-pmap-c)# random-detect

Router(config-pmap-c)# random-detect precedence 5 30 50 5

Router(config-pmap)# class LOW

Router(config-pmap-c)# bandwidth percent 20

Router(config-pmap-c)# random-detect

Router(config-pmap-c)# random-detect precedence 0 20 50 5

Router(config-pmap-c)# random-detect precedence 1 22 50 5

Router(config-pmap-c)# random-detect precedence 2 24 50 5

Router(config)# int fa0/1

Router(config-if)# service-policy output THEPOLICY

DSCP values can be used in place of IP Precedence:

Router(config)# class-map HIGH

Router(config-cmap)# match ip dscp af31 af41

Router(config)# policy-map THEPOLICY

Router(config-pmap)# class HIGH

Router(config-pmap-c)# bandwidth percent 40

Router(config-pmap-c)# random-detect dscp-based

Router(config-pmap-c)# random-detect dscp af31 28 50 5

Router(config-pmap-c)# random-detect dscp af41 30 50 5

To view CBWRED statistics:

Router# show policy-map

